
HLS Live
https://stackoverflow.com/questions/37347894/hls-live-streaming-from-static-files

https://www.toptal.com/apple/introduction-to-http-live-streaming-hls

HLS Live Testing: https://hls-js.netlify.app/demo/

 Video bandwidth comparison for MPEG-1, MPEG-2, MPEG-4 — Usually MPEG-4 is 2-2.5 times smaller than MPEG-2 and 3-4 times smaller than
MPEG-1. MPEG-2 is 30% smaller than MPEG-1.

 Simple HLS server in Python using the Flask web framework — In this example, the Flask application has two routes: /live/<stream_id>.m3u8 and
/live/<stream_id>/<int:sequence>.ts. The first route uses the ffmpeg command-line tool to convert an RTMP stream into an HLS stream, and
returns the contents of the .m3u8 playlist file. The second route returns the contents of individual .ts segments.
To run this server, you'll need to have the Flask web framework and the ffmpeg command-line tool installed. You can start the server by running
the Python script and access the HLS stream by opening in a media player that supports HLS.http://localhost:5000/live/<stream_id>.m3u8

 Streams from multiple HLS (HTTP Live Streaming) manifest files with multiple resolutions in a 30-second window — There are several classes
defined: Segment, Playlist, and HLSManifest. The Segment class has two properties: resolution and url. The Playlist class has a vector of
Segment objects and a method addSegment to add segments to the vector. The HLSManifest class has a map of Playlist objects, where the key
is the resolution and the value is the Playlist object. It also has a method addPlaylist to add playlists to the map and a method `
Streams HLS based on two different files as a live service within a 30-second window in C++

 Inserts an SCTE-104/35 AD Marker into a .m3u8 file — There are two differents identifying markers aka SCTE-104, SCTE-35 that created for
distinguishing media stream like the original broadcast and advertisement. SCTE-104 is mainly created at SDI Feed and SCTE-35 is created at
Encoder.

 Implement an HLS stream in C++ using two different sources based on .m3u8 files — In this example, the code reads the URLs from two different
.m3u8 files source1.m3u8 and source2.m3u8, combines and sorts them, and writes the combined list of URLs to a new .m3u8 file stream.
m3u8. The output file can be used as the manifest for an HLS stream.

 An example of an HLS manifest file (.m3u8) that includes a subtitle track — HLS supports subtitle as a part of HLS manifest (.m3u8)
 Resolve MUST fix issues for Measured peak bitrate in HLS with mediastreamvalidator — You need to set buff_size = max_buffer_size * 1.5,

min_buffer_size = max_buffer_size * 0.92, avg_buffer_size = max_buffer_size * 0.96, gop=60, fps=30 in ffmpeg to avoid MUST fix issues with
Apple meadiastreamvalidator.
Example HLS Manifest (m3u8)
SCTE35 Encoder in Python
SCTE 35 PID(Packet IDentifier)
PlutoTV HLS Manifest (m3u8) example

 Apple's Media Stream Validator (mediastreamvalidator) to verify HLS — Apple provides HTTP Live Streaming Tools to help you set up an HTTP
Live Streaming service. Media Stream Validator(mediastreamvalidator) is a tool to verify if your HLS has no compatibility issue or not. You can
download it at https://developer.apple.com/documentation/http_live_streaming/about_apple_s_http_live_streaming_tools
Ad Marker - CUE/CUE-OUT/CUE-IN and SCTE35

 Burnt-in SRT subtitle based on ffmpeg — ffmpeg provides the straight and easy way to burn-in SRT subtitle. By forece_style, you can customize
your subtitle format like font, fontsize,outline,outlinecolor,borderstyle and so on. The disadvantage of burnt-in caption is that can make bad TV
experience for those who does not want to see the subtitle on top of the screen. On the contrary, the benefit of the burnt-in subitie is that doesn't
require any additional technical tools/modules on the client.

 EXT-X-DISCONTINUITY in HLS — EXT-X-DISCONTINUITY marks a discontinuity between two consecutive segments. Your discontinuity is
between segment1.060.ts and file.000.ts. There is no discontinuity between file.000.ts and file.001.ts so no need to re-insert the tag

https://stackoverflow.com/questions/37347894/hls-live-streaming-from-static-files
https://www.toptal.com/apple/introduction-to-http-live-streaming-hls
https://hls-js.netlify.app/demo/
https://qsok.com/display/KB/Video+bandwidth+comparison+for+MPEG-1%2C+MPEG-2%2C+MPEG-4
https://qsok.com/display/KB/Simple+HLS+server+in+Python+using+the+Flask+web+framework
https://qsok.com/display/KB/Streams+from+multiple+HLS+%28HTTP+Live+Streaming%29+manifest+files+with+multiple+resolutions+in+a+30-second+window
https://qsok.com/pages/viewpage.action?pageId=220954685
https://qsok.com/pages/viewpage.action?pageId=220954682
https://qsok.com/pages/viewpage.action?pageId=220954679
https://qsok.com/display/KB/An+example+of+an+HLS+manifest+file+%28.m3u8%29+that+includes+a+subtitle+track
https://qsok.com/display/KB/Resolve+MUST+fix+issues+for+Measured+peak+bitrate+in+HLS+with+mediastreamvalidator
https://qsok.com/pages/viewpage.action?pageId=170983427
https://qsok.com/display/KB/SCTE35+Encoder+in+Python
https://qsok.com/pages/viewpage.action?pageId=178421792
https://qsok.com/display/KB/PlutoTV+HLS+Manifest+%28m3u8%29+example
https://qsok.com/display/KB/Apple%27s+Media+Stream+Validator+%28mediastreamvalidator%29+to+verify+HLS
https://developer.apple.com/documentation/http_live_streaming/about_apple_s_http_live_streaming_tools
https://qsok.com/pages/viewpage.action?pageId=160759834
https://qsok.com/display/KB/Burnt-in+SRT+subtitle+based+on+ffmpeg
https://qsok.com/display/KB/EXT-X-DISCONTINUITY+in+HLS

	HLS Live

